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Hydrolytic Kinetic Resolution (HKR) of (�)-(�-Naphthyl)
glycidyl ether with (R,R)-salen Co(III) OAc complex provided
enatiomerically pure (S)-naphthyl glycidyl ether and (R)-1-naph-
thyl glycerol; opening of the corresponding pure terminal epox-
ide with 1-(2-methoxyphenyl)piperizine gave the enantiomeri-
cally pure (S)- and (R)-Naftopidil.

The importance of chirality in the context of biological func-
tion has been fully appreciated and the R and S forms of most
drugs are metabolized by different biochemical paths and at dif-
ferent rates. For example, (R)-thalidomide is an effective seda-
tive where as the (S)-enantiomer is highly teratogenic and causes
fetal abnormalities.1

Terminal epoxides are versatile starting materials for the
preparation of bioactive molecules;2 it is pertinent to mention
the different methods to obtain enantiomerically pure epoxides,
which include classical optical resolution via diastereomers,
chromatographic separation, enzymatic resolution, chemical ki-
netic resolution, and asymmetric synthesis. However, the recent-
ly reported technique of Hydrolytic Kinetic Resolution (HKR) of
terminal epoxide by Jacobsen3 has been unexplored for prepara-
tion of chiral building blocks. This process uses water as the only
reagent without solvent and low loading of a recyclable chiral
(R,R)-salen cobalt(III) OAc catalyst (1) affords highly valuable
terminal epoxides and 1,2-diols in high yields with high enantio-
meric enrichment (Scheme 1). This method is also extremely
simple to work with compared to other approaches for chiral gly-
cidyl ethers. Chiral glycidyl derivatives are perhaps one of the

most versatile C3-chiral synthons with neumorous applications
for �-blockers, MAO inhibitors, alkyl glycerophospholipids
and other pharmaceuticals as well as in organic synthesis.4
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Naftopidil
Naftopidil (BM-15275)5 is a vasodilator from the piperizine

derivative series. Pharmacologically, naftopidil is a novel
�1-adrenoceptor antagonist (�1-blocker), renal urologic drug,
used for the treatment of arterial hypertension. Asahi Chemicals
has launched naftopidil (Flivas[R]) in Japan, where it is indicat-
ed for the treatment of dysuria of men with benign prostatic hy-
pertrophy as racemic mixture. In the investigations of the safety
of naftopidil in racemic form, it was found that urine and electro-
lyte excretion was slightly reduced at doses active on blood pres-
sure, with some other sedative properties,6 and also found that
the drug affects on phenylephrine-induced increases in prostatic
and blood pressure in anesthetized dogs.7 All these information
necessitate preparation of optically pure (S)- and (R)-naftopidil
and investigation of their pharmacokinetics as individual molec-
ular entities.

The truly fascinating Hydrolytic Kinetic Resolution of rac-
emic glycidyl ethers8 promoted us to undertake the synthesis
of optically pure (S)- and (R)-naftopidil. �-Naphthol (2) was
treated with racemic epichlorohydrine to afford racemic (�-
naphthyl) glycidyl ether (3). Compound 3, catalyst salen com-
plex (1) and 0.55 equiv. of water stirred for 24 h at room temper-
ature (Scheme 2). Chromatographic purification of the reaction
mixture gave (S)-1-(�-naphthyl) glycidyl ether (4) in 45% yield
{½��D ¼ þ30:1� (c ¼ 1:5, MeOH); lit.9 ½��D ¼ þ31:4� (c ¼
1:5, MeOH)} and (R)-1-(�-naphthyl) glycerol (5) in 45% yield
{½��D ¼ �5:2� (c ¼ 0:7, EtOH); lit.10 ½��D ¼ �4:9� (c ¼ 0:7,
EtOH)} as a light yellow solid (mp 108 �C, lit.10 108–109 �C).

Piperizine derivative, 1-(2-methoxyphenyl)piperizine (8)
was obtained from the coupling of O-anisidine and bis(2-chloro-
ethyl) amine hydrochloride (7), which was prepared from dieth-
anolamine (6) (Scheme 3). (S)-epoxide (4) was treated with pi-
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Scheme 2. a) Epichlorohydrin, K2CO3, acetone, reflux, 12 h,
90%; b) 0.5mol% 1, water (0.55%), rt, 24 h.
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perizine derivative (8) in iPrOH under reflux condition to afford
the (S)-naftopidil (9) in 93% yield {½��D ¼ þ3:8� (c ¼ 1:5,
MeOH)} as a light yellow solid (mp 127 �C).11

Subsequently, diol (5) was subjected to Mitsunobu invertion
with DEAD and Ph3P in bezene under reflux to afford the (R)-
1-(naphthyl) glycidyl ether (10) {½��D ¼ �33:2� (c ¼ 1:5,
MeOH); lit.9 ½��D ¼ �33:9� (c ¼ 1:55, MeOH)}. (R)-epoxide
on treatment with piperizine derivative (8) in iPrOH under reflux
gave the (R)-naftopidil (11) in 90% yield {½��D ¼ �3:94�

(c ¼ 1:5, MeOH)} as a light yellow solid (mp 127–128 �C)
(Scheme 4).

The pharmacokinetic findings suggest that in ten patients
(9M/1F) with severe hepatic impairment or evidence for marked
changes in hepatic blood flow the dose of naftopidil may require
adjustment to the lower end of the therapeutic range and/or may
be limited to once daily.12 In conclusion, it is pertinent to men-
tion that first optically pure (S)- and (R)-naftopidil was synthe-

sized utilizing Jacobsen’s HKR method for the resolution of rac-
emic (�-naphthyl) glycidyl ether. This will promote the investi-
gation of their pharmacokinetics as individual molecular entities
and will be reported soon.
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Scheme 3. a) SOCl2, benzene, reflux, 5 h, 74%; b) O-Anisidine,
aq. NaHCO3, 100

�C, 24 h, 85%; c) 5, iPrOH, reflux, 30 h, 93%.
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Scheme 4. a) DEAD, TPP, benzene, reflux, 24 h, 87%; b) 8,
iPrOH, reflux, 30 h, 90%.
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